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Abstract
This article provides a review of Bayesian model averaging as a means of
optimizing the predictive performance of common statistical models applied
to large-scale educational assessments. The Bayesian framework recognizes
that in addition to parameter uncertainty, there is uncertainty in the choice
of models themselves. A Bayesian approach to addressing the problem of
model uncertainty is the method of Bayesian model averaging. Bayesian
model averaging searches the space of possible models for a set of sub-
models that satisfy certain scientific principles and then averages the coeffi-
cients across these submodels weighted by each model’s posterior model
probability (PMP). Using the weighted coefficients for prediction has been
shown to yield optimal predictive performance according to certain scoring
rules. We demonstrate the utility of Bayesian model averaging for predic-
tion in education research with three examples: Bayesian regression anal-
ysis, Bayesian logistic regression, and a recently developed approach for
Bayesian structural equation modeling. In each case, the model-averaged
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estimates are shown to yield better prediction of the outcome of interest
than any submodel based on predictive coverage and the log-score rule.
Implications for the design of large-scale assessments when the goal is
optimal prediction in a policy context are discussed.
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Bayesian model averaging, large-scale assessments, education

The distinctive feature that separates Bayesian statistical inference from

its frequentist counterpart is its focus on describing and modeling all

forms of uncertainty. The primary focus of uncertainty within the Baye-

sian framework concerns background knowledge about model parameters.

In the Bayesian framework, all unknowns are described by probability

distributions designed to encode background knowledge about para-

meters; and because parameters are, by definition, unknown, Bayesian

inference encodes background knowledge about parameters in the form

of prior distributions.

As with frequentist model building, another goal of Bayesian statistical

analysis is model choice. Two popular methods are the Bayesian informa-

tion criterion (BIC; Kass & Raftery, 1995; Schwarz, 1978) and the deviance

information criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde,

2002). In both cases, a set of models are compared, and the model with the

lowest BIC or DIC value is chosen for summary and discussion.

Within the Bayesian framework, parameters are not the only unknown

elements. In fact, the Bayesian framework recognizes that models them-

selves possess uncertainty insofar as a particular model is typically chosen

among a set of competing models that could also have generated the data.

Quoting Hoeting, Madigan, Raftery, and Volinsky (1999),

Standard statistical practice ignores model uncertainty. Data analysts typi-

cally select a model from some class of models and then proceed as if the

selected model had generated the data. This approach ignores the uncertainty

in model selection, leading to over-confident inferences and decisions that are

more risky than one thinks they are. (p. 382)

In practice, model uncertainty often goes unnoticed, and the impact of

this uncertainty can be quite profound. Although a number of methods exist

in the Bayesian literature to aid in improving model prediction, including

sensitivity analyses via posterior predictive checking (Gelman, Meng, &
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Stern, 1996) and more recently the Bayesian “lasso” (Park & Casella,

2008), in the end, a single model is chosen for prediction purposes. As

in the quote by Hoeting et al. (1999), we do not wish to settle on a single

model but rather draw predictive strength through combining models. The

current approach to addressing the problem of model uncertainty through

combing models from a Bayesian point of view lies in the method of

Bayesian model averaging.

Bayesian model averaging has had a long history of theoretical devel-

opments and practical applications. Early work by Leamer (1978) laid the

foundation for Bayesian model averaging. Fundamental theoretical work on

Bayesian model averaging was conducted in the mid-90s by Madigan and

his colleagues (e.g., Hoeting, Madigan, Raftery, & Volinsky, 1999; Madi-

gan & Raftery, 1994; Raftery, Madigan, & Hoeting, 1997). Additional

theoretical work was conducted by Clyde (1999, 2003). Draper (1995)

discussed how model uncertainty can arise even in the context of experi-

mental designs, and Kass and Raftery (1995) provided a review of Bayesian

model averaging and the costs of ignoring model uncertainty. A review of

the general problem of model uncertainty can be found in Clyde and George

(2004). Bayesian model averaging has been implemented in the R software

programs “BMA” (Zeugner & Feldkircher, 2015) and “BAS” (Clyde,

2017). These packages are quite general, allowing Bayesian model aver-

aging over linear models, generalized linear models, and survival models,

with flexible handling of parameter priors.

Practical applications of Bayesian model averaging can be found across

a wide variety of domains. A perusal of the extant literature shows appli-

cations of Bayesian model averaging to economics (e.g., Fernández, Ley, &

Steele, 2001), political science (e.g., Montgomery & Nyhan, 2010), bioin-

formatics of gene express (e.g., Yeung, Bumbarner, & Raftery, 2005),

weather forecasting (e.g., Sloughter, Gneiting, & Raftery, 2013), causal

inference using propensity score analysis (Chen & Kaplan, 2015; Kaplan

& Chen, 2012, 2014), and structural equation modeling (SEM; Kaplan &

Lee, 2015) to name just a few.

Policy Significance

The subject-matter motivation for this article lies in the use of large-scale

assessments for education policy analysis. Specifically, of critical impor-

tance to educational evaluation and policy analysis is the monitoring of

trends in important educational outcomes. For example, the United Nations

Sustainable Development Goals identified Goal 4 as focusing on quality
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education for all. Many of the stated targets under Goal 4 focus on reducing

the gender gap in quality education, and, in particular, Goal 4.6 focuses on

achieving literacy and numeracy for men and women (http://www.un.org/

sustainabledevelopment/).

Developing optimal predictive models would allow education research-

ers and policy makers to assess cross-country progress and forecasts toward

Goal 4.6 using, among other data sources, large-scale cross-sectional and

longitudinal educational data such as the Early Childhood Longitudinal

Study (ECLS-K; National Center for Educational Statistics (NCES),

2001), the Program for International Student Assessment (PISA; e.g., Orga-

nization for Economic Cooperation and Development (OECD), 2010), or

the Trends in International Mathematics and Science Study (TIMSS; e.g.,

Mullis, 2013). Large-scale assessments provide a unique lens on the ante-

cedents, mediators, and outcomes of education policies and practices.

Although applications of advanced statistical models to these types of data

are, of course, not new, a review of the extant literature indicates that these

models have not been applied to educational data with the explicit goal of

obtaining models exhibiting optimal predictive performance for education

research, evaluation, or policy purposes.

Purpose and Organization of this Article

The purpose of this article is to provide a general review of Bayesian model

averaging with applications to common statistical models applied in edu-

cational research, evaluation, and policy analysis. Our focus is on tradi-

tional methods of Bayesian model averaging that make use of readily

available software applied to real data in order to demonstrate the gain in

predictive accuracy when applying Bayesian model averaging for optimiz-

ing predictive performance. It should be noted, however, that Bayesian

model averaging is still an active field of methodological development.

The organization of this article is as follows. In the next section, we

discuss the model choice problem. Next, we outline the method of Bayesian

model averaging with an additional discussion of Occam’s window and the

MC3 algorithm, following closely the work of Madigan and his colleagues

(Hoeting et al., 1999; Madigan & Raftery, 1994; Raftery et al., 1997). We

then demonstrate Bayesian model averaging with three examples: Bayesian

linear regression, Bayesian logistic regression, and Bayesian structural

equation modeling (BSEM). This article next discusses some additional

technical considerations, a brief discussion of frequentist approaches to

model averaging, and finally, implications for large-scale assessment
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designs when the goal is to optimize prediction. The last section of this

article concludes. All analyzes are conducted within the R programming

environment (R Core Team, 2017), and all data and code are available at

http://bise.wceruw.org/index.html

The Method of Bayesian Model Averaging

Following Madigan and Raftery (1994), consider a quantity of interest such as

a future observation. We will denote this quantity asU. Next, consider a set of

competing models Mk , k ¼ 1; 2; . . . ;K that are not necessarily nested. The

posterior distribution ofU given data y can be written as a mixture distribution,

pðUjyÞ ¼
XK

k¼1

pðUjMkÞpðMk jyÞ; ð1Þ

pðMk jyÞ is the posterior probability of model Mk written as:

pðMk jyÞ ¼
pð yjMkÞpðMkÞXK

l¼1
pð yjMlÞpðMlÞ

; ð2Þ

the first term in the numerator on the right-hand side of Equation 2 is the

probability of the data given model k, also referred to as the integrated

likelihood written as:

pðyjMkÞ ¼
Z

pðyjqk ;MkÞpðqk jMkÞdqk ; ð3Þ

pðqk jMkÞ is the prior distribution of the parameters qk under model Mk

(Raftery et al., 1997). The PMPs can be considered mixing weights for the

mixture distribution given in Equation 1 (Clyde & Iversen, 2015). The

second term pðMkÞ on the right-hand side of Equation 2 is the prior model

probability for model k, allowing each model to have a different prior

probability based on past performance of that model or a belief regarding

which of the models might be the true model. The denominator of Equation

2 ensures that pðMk jyÞ integrates to 1.0, as long as the true model is in the

set of models under consideration. A review of this latter issue is reserved

for the Discussion section of this article.

Connections to Bayes Factors (BFs)

An important feature of Equation 2 is that pðMk jyÞ captures the posterior

(postdata) uncertainty in a given model and will likely vary across models.
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Herein lies the problem of model selection; given the choice of a particular

model, the analyst effectively ignores the uncertainty in other models that

could have generated the data. Of course, Equation 2 could be used as a

method for model selection, simply choosing the model with the largest

PMP. However, to settle on a particular model still ignores the uncertainty

inherent in the choice problem.

Yet another common approach for model selection is the BF which

provides a way to quantify the odds that the data favor one hypothesis

over another (Kass & Raftery, 1995). A key benefit of BFs is that

models do not have to be nested. To motivate the BFs, consider two

competing models, denoted as Mk and Ml, that could be nested within

a larger space of alternative models. Let qk and ql be the two parameter

vectors associated with these two models. These could be two regres-

sion models with a different number of variables or two SEMs speci-

fying very different directions of mediating effects. The goal is to

develop a quantity that expresses the extent to which the data support

Mk over Ml. One quantity could be the posterior odds of Mk over Ml,

expressed as:

pðMk jyÞ
pðMljyÞ

¼ pð yjMkÞ
pð yjMlÞ

� pðMkÞ
pðMlÞ

� �
: ð4Þ

The first term on the right-hand side of Equation 4 is the ratio of two

integrated likelihoods. This ratio is referred to as the BF for Mk over Ml,

denoted here as BFkl. In words, our prior opinion regarding the odds of Mk

over Ml, given by pðMkÞ=pðMlÞ, is weighted by our consideration of the

data, given by pðyjMkÞ=pðyjMlÞ.
A connection between the BF in Equation 4 and the PMP in Equation 2

has been pointed by others (see, e.g., Clyde, 1999). Specifically, when

examining more than two models, and assuming equal prior odds, then the

BF for Mk over Ml can be written as:

BFkl ¼
pð yjMkÞ
pð yjMlÞ

: ð5Þ

Assuming that we fix the first model M1 as the baseline model, Equation

2 can be reexpressed as:

pðMk jyÞ ¼
BFk1pðMkÞXK

l¼1

BFl1pðMlÞ
: ð6Þ
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Computational Issues

As pointed out by Hoeting et al. (1999), Bayesian model averaging is

difficult to implement. In particular, they note that the number of terms

in Equation 1 can be quite large, the corresponding integrals are hard to

compute (though possibly less so with the advent of Markov chain Monte

Carlo [MCMC] sampling), the specification of pðMkÞ may not be straight-

forward, and choosing the class of models to average over is also

challenging.

To address the problem of computing Equation 3, the Laplace method,

which has been used productively for the computation of BFs (Kass &

Raftery, 1995), can be used, and this will lead to a simple BIC approxima-

tion under certain circumstances (Raftery, 1996; Tierney & Kadane, 1986).1

The problem of reducing the overall number of models that one could

incorporate in the summation of Equation 1 has led to two interesting

solutions. One solution is based on the so-called Occam’s window criterion

(Madigan & Raftery, 1994) and the other is based on MCMC model com-

position (MC3)

Occam’s window. To motivate the idea behind Occam’s window, con-

sider the problem of finding the best subset of predictors in a linear

regression model.2 Following closely the discussion given in Raftery,

Madigan, and Hoeting (1997), we could initially start with very large

number of predictors, but perhaps the goal is to narrow down this

initially large set of predictors to a small number of predictors that

provide accurate predictions. As noted in the earlier quote by Hoeting

et al. (1999), the concern in drawing inferences from a single “best”

model is that the choice of a single set of predictors ignores uncer-

tainty in model selection. Occam’s window provides an approach to

Bayesian model averaging that reduces the subset of models under

consideration.

The algorithm proceeds in two steps (Raftery et al., 1997). In the first

step, models are eliminated from Equation 1 if they predict the data much

less well than the model that provides the best predictions based on a

“caliper” value C chosen in advance by the analyst. The caliper C sets the

“width” of Occam’s window. Formally, consider again a set of models Mk ,

k ¼ 1; :::;K. Then, the set A0 is defined as:

A0 ¼ Mk :
maxlfpðMljyÞg

pðMk jyÞ
� C

� �
: ð7Þ
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In words, Equation 7 compares the model with the largest PMP,

maxlfpðMljyÞg, to a given model, pðMk jyÞ. If the ratio in Equation 7 is

greater than the chosen value C, then it is discarded from the set A0 of

models to be included in the model averaging. Notice that the set of models

contained in A0 is based on BF values.

The set A0 now contains models to be considered for model averaging. In

the second, optional, step, models are discarded from A0 if they receive less

support from the data than simpler submodels. Formally, models are further

excluded from Equation 1 if they belong to the set:

B ¼ Mk : 9Ml 2 A0;Ml � Mk ;
pðMljyÞ
pðMk jyÞ

> 1

� �
: ð8Þ

Again, in words, Equation 8 states that there exists a model Ml within the

set A0 and where Ml is simpler than Mk . If a complex model receives less

support from the data than a simpler submodel—again based on the BF—

then it is excluded from B. Notice that the second step corresponds to the

principle of Occam’s razor (Madigan & Raftery, 1994).

With Step 1 and Step 2, the problem of Bayesian model averaging is

simplified by replacing Equation 1 with:

pðUjy;AÞ ¼
X
Mk2A

pðUjMk ; yÞpðMk jy;AÞ: ð9Þ

In other words, models under consideration for Bayesian model aver-

aging are those that are in A0 but not in B. Formally, A ¼ A0\B.

Madigan and Raftery (1994) then outline an approach to the choice

between two models to be considered for Bayesian model averaging. To

make the approach clear, consider the case of just two models M1 and M0,

where M0 is the simpler of the two models. This could be the case where M0

contains fewer predictors than M1 in a regression analysis. In terms of log-

posterior odds, if the log-posterior odds are positive, indicating support for

M0, then we reject M1. If the log-posterior odds is large and negative, then

we reject M0 in favor of M1. Finally, if the log-posterior odds lies in

between the preset criterion, then both models are retained.

MC3. The goal of MC3 is the same as that of Occam’s window—namely—to

reduce the space of possible models that can be explored in a Bayesian

model averaging exercise. Following Hoeting et al. (1999), the MC 3 algo-

rithm proceeds as follows. First, let M represent the space of models of

interest; in the case of linear regression, this would be the space of all

possible combinations of variables. Next, the theory behind MCMC allows
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us to construct a Markov chain fMðtÞ; t ¼ 1; 2; . . . ; g which converges to

the posterior distribution of model k, that is, pðMk jyÞ.
The manner in which models are retained under MC 3 is as follows. First,

for any given model currently explored by the Markov chain, we can define

a neighborhood for that model which includes one more variable and one

less variable than the current model. So, for example, if our model has four

predictors x1, x2, x3, and x4, and the Markov chain is currently examining

the model with x2 and x3, then the neighborhood of this model would

include fx2g, fx3g, fx2; x3; x4g, and fx1; x2; x3g. Now, a transition matrix

is formed such that moving from the current model M to a new model M 0

has probability 0 if M 0 is not in the neighborhood of M and has a constant

probability if M 0 is in the neighborhood of M. The model M 0 is then

accepted for model averaging with probability,

min 1;
prðM 0jyÞ
prðM jyÞ

� �
; ð10Þ

otherwise, the chain stays in model M .

Gauging Predictive Performance in Bayesian Model Averaging

A key characteristic of statistics is to develop accurate predictive models

(Dawid, 1984). Indeed, as pointed out by Bernardo and Smith (2000), all

other things being equal, a given model is to be preferred over other com-

peting models if it provides better predictions of what actually occurred.

Thus, a critical component in the development of accurate predictive mod-

els is to decide on rules for gauging predictive accuracy—often termed

scoring rules.

Scoring rules provide a measure of the accuracy of probabilistic fore-

casts, and a forecast can be said to be “well-calibrated” if the assigned

probabilities of the outcome match the actual proportion of times that the

outcome occurred. The development of accurate predictive models has,

arguably, been overlooked in education where the goal has been instead

an orientation toward finding well-fitting models, particularly in the context

of SEM (e.g., Kaplan, 2009).

A number of scoring rules are discussed in the literature (see, e.g.,

Gneiting & Raftery, 2007; Jose, Nau, & Winkler, 2008; Merkle & Steyvers,

2013a; Winkler, 1996); however, for this article, we will primarily evaluate

predictive performance using the 90% predictive coverage criterion (Hoet-

ing et al., 1999) and the log of the percentage predictive coverage for

continuous outcomes referred to as the log score. Predictive coverage is
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used productively in frequentist and Bayesian settings and is assessed using

the proportion of predicted observations that fall in the corresponding 90%
prediction interval. For this article, the predictive coverage criterion is

implemented via the R routine “predict” in the program “stats” (R Core

Team, 2017). For the prediction of a dichotomous outcome, it is common to

use the Brier (1950) score defined as:

Brier ¼ 1

T

XT

t¼1

ð ft � otÞ2; ð11Þ

where over each forecast instant t, ft is the probabilistic forecast and ot is

the observed event (1 if the forecasted event took place, 0 otherwise). Both

the log score and the Brier score are so-called proper scoring rules insofar

as the score is maximized (or minimized in the case of the Brier score)

when the reported forecast probability is the same as true probability. In

both cases, the log score is a local and strictly proper scoring rule that

assesses the quality of the prediction by providing a numerical score based

on the accuracy of the match between the predictive distribution and the

actual obtained values. The log score is strictly proper in the sense that it is

unique (see, e.g., Gneiting & Raftery, 2007; Merkle & Steyvers, 2013b,

for more detail).

Case Study 1: Bayesian Model Averaging for the Linear
Regression Model Using PISA 2009

Data and Model

The first case study make uses of the same data set and linear regression

model as used by Kaplan (2014) except here we focus on relative predictive

performance. The data set was collected from PISA 2009–eligible students

in the United States (OECD, 2009). The sample size was 4,924 after list-

wise deletion which was then was split into a model averaging set (n ¼
2,462) and a predictive testing set (n ¼ 2,462). For this regression example,

the outcome, reading proficiency (READING), was regressed on a set of

background, attitudinal, and reading strategy variables. Background vari-

ables included FEMALE (male ¼ 0, female ¼ 1), immigrant status

(NATIVE), language that the students use (SLANG: coded 1 if the test

language is the same as language at home, 0 otherwise), and a measure

of economic, social, and cultural status of the students (ESCS). Variables

measuring reading attitudes were enjoyment of reading (JOYREAD) and

diversity in reading (DIVREAD). Measures of student reading strategies

10 Evaluation Review XX(X)



were memorization strategies (MEMOR), elaboration strategies (ELAB),

and control strategies (CSTRAT). The first plausible value of the PISA

2009 reading assessment was used as the dependent variable for the regres-

sion model (see von Davier, 2013, for a discussion of plausible values).3

This model serves as the initial model for Bayesian model averaging and

can be defined as:

dREADING ¼ b0 þ b1ðFEMALEÞ þ b2ðNATIVEÞ þ b3ðSLANGÞ
þ b4ðESCSÞ þ b5ðJOYREADÞ þ b6ðDIVREADÞ
þ b7ðMEMORÞ þ b8ðELABÞ þ b9ðCSTRATÞ: ð12Þ

It should be noted that neither the model in Equation 12 nor the models in

Case Studies 2 and 3 below contain interaction terms. This was done for

simplicity and ease of communicating the central purpose of BMA. How-

ever, BMA can incorporate interaction terms, but it is important to proceed

with caution. We mention the issue of using interaction terms within BMA

in the Discussion section.

Method

For Bayesian model averaging, we used the “bicreg” function within the R

package BMA (Raftery, Hoeting, Volinsky, Painter, & Yeung, 2015) set-

ting Occam’s window to 20. The BMA program utilizes the Laplace

approximation described above and is computationally quite fast even for

fairly large regression models. For model parameters, we used the default in

the BMA package—namely, the unit information prior. Following Raftery

(1998, pp. 3–6), the unit information prior is a weakly informative prior that

is diffused over the region of the likelihood where parameter values are

considered mostly plausible but not overly spread out. This is accomplished

by forming the prior based on the maximum likelihood estimate of the

parameter mean, with variance equal to the expected information matrix

for one observation. The prior on the model space is 1=M , where M is the

number of models.

The Bayesian regression model was estimated using the Gibbs sampler as

implemented in the “MCMCregress” function within the “MCMCpack”

package (A. D. Martin, Quinn, & Park, 2013). We used improper uniform

priors for the regression coefficients and precisions. In addition, the variance

of the disturbance term was set to have a noninformative inverse-gamma

distribution with shape and scale of 0.001. This analysis used 100,000 itera-

tions, with 5,000 burn-in iterations and a thinning interval of 10.
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Case Study 1 also compared the predictive performance of a Baye-

sian model averaging regression to Bayesian and frequentist regres-

sions based on the initially specified regression model. For

comparison of predictive performance, we used a measure of 90%
prediction coverage, which is the percentage of the observations in

the prediction set that fall in their corresponding 90% prediction inter-

val (Hoeting et al., 1999).

Regression Results

Table 1 presents four regression models selected by BMA. Based on the

full model in Equation 12, BMA selected four models (Models 1–4) after

narrowing down the number of models via Occam’s window. The four

models are shown in descending order in term of the PMPs and accounts

for 100% of the total PMP. Note that the best model (Model 1) accounts

for only 76% of the total PMP indicating a fair amount of uncertainty

remaining in the model selection. The black dots represent predictors that

appear in the respective models. Of the nine predictors in the full model,

only five predictors (ESCS, JOYREAD, MEMOR, ELAB, and CSTRAT)

appear across all four models.

Table 1. Selected Models by Bayesian Model Averaging: Regression Model Using
PISA 2009.

Predictor Model 1 Model 2 Model 3 Model 4

GENDER �
NATIVE
SLANG �
ESCS � � � �
JOYREAD � � � �
DIVREAD �
MEMOR � � � �
ELAB � � � �
CSTRAT � � � �
BIC �996.07 �992.77 �990.55 �990.29
PMP .76 .15 .05 .04

Note. PMP ¼ posterior model probability; PISA ¼ Program for International Student Assess-
ment; ESCS ¼ measure of economic, social, and cultural status of the students; JOYREAD ¼
enjoyment of reading; DIVREAD ¼ diversity in reading; MEMOR ¼ memorization strategies;
ELAB ¼ elaboration strategies; CSTRAT ¼ control strategies; BIC ¼ Bayesian information
criterion.
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We compared results from Bayesian model averaging to results from a

single Bayesian regression analysis of the initial model in Table 2 (labeled

“Bayes Reg.”). Some differences between two results are indicated. For

example, the variable NATIVE under Bayesian model averaging has no

effect on READING while having a negative effect under the Bayesian

regression model. In addition, Bayesian model averaging shows weak evi-

dence for DIVREAD’s effect on READING with only 14.6% of the pro-

portion of the nonzero posterior probability of the coefficient (D. Wang,

Zhang, & Bakhai, 2004). Bayesian regression, however, indicated DIV-

READ as an important predictor.

Prediction Results for the Regression Model

When comparing models in terms of 90% predictive coverage and the log-

score rule, Bayesian model averaging yielded a more liberal predictive

coverage (96%) compared to the best model from BMA, the Bayesian

regression model, or the frequentist regression model as shown in Table 3.

It is important to point out that although the predictive performance in this

example is somewhat liberal, a small simulation based on this model with

Table 2. Comparison of the Result of Bayesian Model Averaging to the Result of
the Bayesian Regression.

Bayesian Model Averaging Bayes Regression

Predictor
Mean
ðbjyÞ

SD
ðbjyÞ P ðb 6¼ 0jyÞ% EAP SD 95% PPI

INTERCEPT 495.16 2.35 100.00 486.97 4.79 [477.59, 496.32]
FEMALE 0.20 1.17 4.20 4.27 3.36 [�2.30, 10.88]
NATIVE 0.00 0.00 0.00 �2.16 5.51 [�13.08, 8.40]
SLANG 0.36 1.93 4.80 8.60 6.48 [�3.99, 21.33]
ESCS 28.73 1.74 100.00 28.35 1.85 [24.78, 32.06]
JOYREAD 29.64 1.68 100.00 30.10 1.78 [26.59, 33.63]
DIVREAD �0.52 1.42 14.60 �3.42 1.68 [�6.70, �0.14]
MEMOR �20.71 1.86 100.00 �21.02 1.87 [�24.62, �17.32]
ELAB �16.44 1.78 100.00 �15.66 1.78 [�19.12, �12.18]
CSTRAT 28.37 2.11 100.00 28.56 2.13 [24.39, 32.75]

Note. N ¼ 2,462. EAP ¼ expected a posterior; SD ¼ posterior standard deviation; PPI ¼
posterior probability interval; ESCS ¼ measure of economic, social, and cultural status of the
students; JOYREAD ¼ enjoyment of reading; DIVREAD ¼ diversity in reading; MEMOR ¼
memorization strategies; ELAB ¼ elaboration strategies; CSTRAT ¼ control strategies.
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10,000 replications revealed the mean predictive coverage interval was

0.79–0.98 and centered at 0.90. This small simulation study highlights the

importance of supplementing Bayesian prediction with a frequentist cali-

bration. This fusing of Bayesian modeling and frequentist calibration has

been discussed generally by Little (2006) and in the context of BMA by

Draper (1999).

Case Study 2: Bayesian Model Averaging for the
Logistic Regression Model Using ECLS-K 1998

Data and Model

For this case study, we use data from Kaplan and Chen (2012)

who studied Bayesian model averaging in the context of propensity

score analysis. The data set was randomly sampled from the Early

Childhood Longitudinal Study Kindergarten cohort of 1998 (NCES,

2001, ECLS-K). For this example, we model whether full-day or part-

day kindergarten attendance can be predicted by 14 variables based on

Bayesian model averaging and Bayesian logistic regression. The sample

size was 1,000 where 538 children were in full-day programs (FULL-

DAY ¼ 1) and 462 children in part-day programs (FULLDAY ¼ 0).

The sample was evenly divided into a model averaging set (n ¼ 500)

and a predictive testing set (n ¼ 500). Those predictors included

GENDER, RACE, mother’s employment status (MEMP), child’s age

at kindergarten entry (AGEENT), child’s age at first nonparental care

(AGEFRS), primary type of nonparental care (PRIMNW), both parent

language to child (LANGUG), number of siblings (NUMSIB), family

composition (FAMIL), mother’s employment between child’s birth and

kindergarten (MEMPBK), number of nonparental care arrangement

(NUMPRK), social economic status (SES), parent’s expectation of

Table 3. Comparison of the Predictive Performance.

Regression Model
Percentage of

Predictive Coverage (%)
Log Score of

Predictive Coverage

Bayesian model averaging 95.69 �.04
Best model from Bayesian

model averaging
90.50 �.10

Bayesian model 90.50 �.10
Frequentist model 90.45 �.10
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child’s degree (EXPECT), and how often parent reads to child (READ).

The full logistic regression model we were interested in was:

logitð dFULLTIMEÞ ¼ b0 þ b1ðGENDERÞ þ b2ðRACEÞ þ b3ðMEMPÞ
þ b4ðAGEENTÞ þ b5ðAGEFRSÞ þ b6ðPRIMNWÞ
þ b7ðLANGUGÞ þ b8ðNUMSIBÞ þ b9ðFAMILÞ
þ b10ðMEMPBKÞ þ b11ðNUMPRKÞ þ b12ðSESÞ
þ b13ðEXPECTÞ þ b14ðREADÞ:

ð13Þ

Method

As with the linear regression example in Case Study 1, we used noninfo-

mative priors for the logistic regression model for Case Study 2. For

Bayesian model averaging, we utilize the “bicglm” function within the

R program BMA (Raftery et al., 2015) with Occam’s window set to 20.

The Bayesian logistic regression model was estimated using the Gibbs

sampler as implemented in the “MCMClogit” function within the R pack-

age “MCMCpack” package (A. D. Martin et al., 2013). We specify non-

informative priors by setting the means for all regression coefficients to 0

and the precisions of all regression coefficients to 0.01 (variance ¼ 100).

This specification results in highly diffused priors for all coefficients. The

variance of the disturbance term was set to have a noninformative inverse-

gamma distribution with shape and scale of 0.001. The analysis used

100,000 iterations, with 5,000 burn-in iterations, a thinning interval of

50, and a Metropolis tuning of 0.25.

Logistic Regression Results

Based on the full logistic regression model in Equation 13, the BMA

program selected 11 models, and the best 5 selected models are shown

in Table 4. The five models account for 84% of the total PMP. Model 1

accounts for only 44% of the total PMP thus showing that a large amount

of uncertainty still exists in the model selection process. In this case study,

only two predictors, PRIMNW and FAMIL, appear in the best five

models.

From Table 5, we see that the differences between the Bayesian model

averaging model and Bayesian logistic model (labeled “Bayes Log. Reg.”)

are large. With the exception of PRIMNW and FAMIL, the remaining 12

predictors showed little or weak relationships to FULLDAY in the Bayesian
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model averaging model. The Bayesian logistic regression model, however,

indicated two more important predictors: MEMP and MEMPBK.

Prediction Results for the Logistic Regression Model

We also assessed the predictive performance of the Bayesian model

averaging logistic model and compared it to the predictive perfor-

mance of the Bayesian and frequentist logistic models. To compare

predictive performance based on the binary dependent variable,

FULLDAY, the Brier (1950) score was adopted. For this study, the

Brier score is defined in Equation 11. We see from Table 6 that

although the differences are quite small, the Brier score is lowest for

Table 4. The Best Five Selected Models by Bayesian Model Averaging: Logistic
Regression Model.

Predictor Model 1 Model 2 Model 3 Model 4 Model 5

GENDER
RACE �
MEMP �
AGEENT
AGEFRS �
PRIMNW � � � � �
LANGUG
NUMSIB
FAMIL � � � � �
MEMPBK
NUMPRK
SES
EXPECT
READ �
BIC �2,426.70 �2,425.10 �2,423.43 �2,422.94 �2,421.99
PMP 0.44 0.20 0.09 0.07 0.04

Note. Cumulative PMP over the best five models ¼ 0.84; PMP ¼ posterior model probability;
MEMP ¼ mother’s employment status; AGEENT ¼ child’s age at kindergarten entry; AGEFRS
¼ child’s age at first nonparental care; PRIMNW ¼ primary type of nonparental care; LAN-
GUG ¼ both parent language to child; NUMSIB ¼ number of siblings; FAMIL ¼ family com-
position; MEMPBK¼mother’s employment between child’s birth and kindergarten; NUMPRK
¼ number of nonparental care arrangement; SES ¼ social economic status; EXPECT ¼ par-
ent’s expectation of child’s degree; READ ¼ how often parent reads to child; BIC ¼ Bayesian
information criterion.
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the Bayesian model averaging logistic regression model indicating

better predictive performance compared to the best model selected

by BMA, the single Bayesian logistic regression model, or the fre-

quentist regression model.

Table 5. Comparison of the Result of Bayesian Model Averaging to the Result of
the Bayesian Logistic Regression.

Bayesian Model Averaging Bayes Log. Regression

Predictor Mean ðbjyÞ SD ðbjyÞ P ðb 6¼ 0jyÞ% EAP SD 95% PPI

INTERCEPT �0.02 0.47 100.0 �.01 1.70 [�3.30, 3.36]
GENDER .00 .00 0.0 �.04 0.19 [�0.40, 0.35]
RACE .00 .02 4.1 �.13 0.10 [�0.33, 0.06]
MEMP �.01 .05 8.5 �.19 0.09 [�0.36, �0.01]
AGEENT .00 .00 2.7 .01 0.02 [�0.03, 0.06]
AGEFRS .00 .01 27.0 �.01 0.01 [�0.03, 0.00]
PRIMNW �.19 .05 100.0 �.25 0.05 [�0.35, �0.14]
LANGUG .00 .00 0.0 .08 0.17 [�0.26, 0.42]
NUMSIB .00 .00 0.0 .03 0.09 [�0.15, 0.20]
FAMIL .39 .10 100.0 .42 0.11 [0.19, 0.63]
MEMPBK .02 .10 6.5 .67 0.27 [0.14, 1.20]
NUMPRK .00 .00 0.0 .00 0.11 [�0.22, 0.21]
SES .00 .02 2.3 .05 0.14 [�0.21, 0.33]
EXPECT .00 .01 2.3 �.04 0.10 [�0.22, 0.15]
READ �.02 .07 10.1 �.21 0.13 [�0.47, 0.05]

Note. N¼ 500. EAP¼ expected a posterior; SD¼ posterior standard deviation; PPI¼ posterior
probability interval; MEMP ¼ mother’s employment status; AGEENT¼ child’s age at kindergar-
ten entry; AGEFRS ¼ child’s age at first nonparental care; PRIMNW ¼ primary type of non-
parental care; LANGUG¼ both parent language to child; NUMSIB¼ number of siblings; FAMIL
¼ family composition; MEMPBK ¼ mother’s employment between child’s birth and kindergar-
ten; NUMPRK ¼ number of nonparental care arrangement; SES ¼ social economic status;
EXPECT ¼ parent’s expectation of child’s degree; READ ¼ how often parent reads to child.

Table 6. Comparison of the Predictive Performance.

Logistic Regression Model Brier Score

Bayesian model averaging .24566
Best model from Bayesian model averaging .24644
Bayesian model .25786
Frequentist model .25674
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Case Study 3: Bayesian Model Averaging for SEM
Using PISA 2009

Brief Definition and History of SEM

Following Kaplan (2009), SEM can perhaps best be defined as a class of

methodologies that seeks to represent hypotheses about summary statistics

derived from empirical measurements in terms of a smaller number of

“structural” parameters defined by a hypothesized underlying model. The

history of SEM can be roughly divided into two generations. The first

generation of SEM began with the initial merging of confirmatory factor

analysis and simultaneous equation modeling (see, e.g., Jöreskog, 1973). In

addition to these founding concepts, the first generation of SEM witnessed

important methodological developments in handling nonstandard condi-

tions of the data. These developments included methods for dealing with

nonnormal data, missing data, and sample size sensitivity problems (see,

e.g., Kaplan, 2009). The second generation of SEM could be broadly char-

acterized by another merger: This time, combining models for continuous

latent variables developed in the first generation with models for categorical

latent variables (see B. Muthén, 2001). The integration of continuous and

categorical latent variables into a general modeling framework was due to

the extension of finite mixture modeling to the SEM framework. This

extension has provided an elegant theory, resulting in a marked increase

in important applications. These applications include, but are not limited to,

methods for handling the evaluation of interventions with noncompliance

(Jo & Muthen, 2001), discrete-time mixture survival models (B. Muthén &

Masyn, 2005), and models for examining unique trajectories of growth in

academic outcomes (Kaplan, 2003).

A parallel development to first and second generation SEM has been

the expansion of Bayesian methods for complex statistical models, includ-

ing SEMs. Early papers include J. K. Martin and McDonald (1975), Lee

(1981), and Scheines, Hoijtink, and Boomsma (1999). Lee (2007) pro-

vides a review and extensions of BSEM. The increased use of Bayesian

tools for statistical modeling has come about primarily as a result of

progress in computational algorithms based on MCMC sampling. The

MCMC algorithm is implemented in software programs such as WinBugs

(Lunn, Thomas, Best, & Spiegelhalter, 2000), Mplus (L. K. Muthén &

Muthén, 1998–2010), and various packages within the R archive (R Core

Team, 2017), such as “rjags” and “rstan.”
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Method

We focus our attention on SEMs among observed variables. Following the

notation by Kaplan and Lee (2015, see also; Kaplan & Depaoli, 2012;

Kaplan, 2009), a SEM can be specified as follows. Let

y ¼ αþ Byþ Γxþ ζ; ð14Þ

where y is a vector of manifest endogenous variables and x be a vector of

observed exogenous variables with covariance matrix F. Further, let α is a

vector of structural intercepts, B is a matrix of structural regression coeffi-

cients relating the observed variables y to other observed endogenous vari-

ables, Γ is a matrix of structural regression coefficients relating the

endogenous variables to observed exogenous variables x, and ζ is a vector

of structural disturbances with covariance matrix C assumed to be diagonal.

Conjugate priors for SEM parameters. To specify prior distributions on all

model parameters, we follow the notation of Kaplan and Depaoli (2012)

and arrange the model parameters as sets of common conjugate prior dis-

tributions. Parameters with the subscript norm follow a normal distribution,

while those with the subscript IW follow an inverse Wishart distribution.

Let θnorm ¼ fα;B;Γg be the vector of free model parameters that are

assumed to follow a normal distribution, and let θIW ¼ fF;Cg be the vector

of free model parameters that are assumed to follow the inverse Wishart

distribution. Formally, we write:

θnorm*Nðm;OÞ; ð15Þ

where m and O are the mean and variance hyperparameters, respectively, of

the normal prior. For blocks of variances and covariances in X and C, we

assume that the prior distribution is inverse Wishart, that is,4

θIW*IWðR; dÞ; ð16Þ

where R is a positive definite matrix, and d > q� 1, where q is the number

of observed variables. Different choices for R and d will yield different

degrees of “informativeness” for the inverse Wishart distribution.

The “BMASEM” algorithm. Following closely the recent paper by Kaplan and

Lee (2015), our approach to Bayesian model averaging for SEMs draws on

the fact that path diagrams within the SEM tradition can be seen as special

cases of so-called directed acyclic graphs (DAGs), the latter having been

developed by Pearl (2009). Bayesian model averaging over DAGs has also
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been discussed in Madigan and Raftery (1994); however, a review of the

extant literature indicates that Bayesian model averaging over DAGS has

not been utilized in education and not fully developed for SEM.

In this section, we describe the full algorithm used to conduct Bayesian

model averaging for SEMs for Case Study 3. The general steps of the

algorithm are as follows: (a) specify an initial model of interest recognizing

that this may not be the model that generated the data; (b) starting with the

initial model represented as a DAG, implement a search over the DAG to

reduce the space of models to a reasonable size while maintaining the dis-

tinction between exogenous, mediating, and endogenous variables; (c) obtain

the PMPs for each model; (d) obtain the weighted average of structural

parameters over each model, weighted by the PMPs; and (e) compare pre-

dictive performance of the Bayesian model averaging SEM to the initially

specified BSEM by computing the reduced form of the models and calculat-

ing the log score and/or the predictive coverage (Kaplan & Lee, 2015).

Model selection via the up and down algorithm. We apply the search algorithm

first suggested by Madigan and Raftery (1994) and implemented by Kaplan

and Lee (2015) that they refer to as the “up and down algorithm.” Starting

with an initial model, the algorithm first executes the “down” algorithm,

wherein each model in the set is compared with its submodels. If there is a

model with no submodel in the down algorithm, then model comes under

consideration for the “up” algorithm. Thus, the up algorithm is carried out

only when a set of models under consideration for the up algorithm exist

after the down algorithm is completed. Occam’s window and Occam’s

razor are employed in the up and down algorithm to select the submodels

which predict as well as the best model. The details of the algorithm are

given in Kaplan and Lee (2015).

Averaging over SEM parameters. A set of K possible SEMs ðk ¼ 1; 2; :::;KÞ in

the set A are chosen through the up and down algorithm. With this set, the

PMPs are obtained using a BIC approximation as:

pðMk jDÞ ¼
expð�:5� DBICÞXK

l¼1
expð�:5� DBICÞ

; ð17Þ

where DBIC is the difference of BIC of Mk and the maximum of BICs of all

the models in the set. The PMPs are used as weights to obtain posterior

means of parameters across all the models in the set. In other words, poster-

ior means of the model parameters are the averaged parameters of the
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posterior distributions for the set of selected models, weighted by their

PMPs. The posterior mean for a parameter q under model Mk , given the

data D, can be written as (see Kaplan & Lee, 2015):

EðqjD;MkÞ ¼
X
Mk2A

q̂pðMk jDÞ: ð18Þ

Data and Model

Case Study 3 used the same data set as used for Case Study 1 but selected 8

of the 10 variables including ESCS, GENDER, NATIVE, MEMOR,

ELAB, CSTRAT, JOYREAD, and READING for SEM. The model of

interest is illustrated in Figure 1. The first three background variables

were exogenous variables and the rest five variables were endogenous

variables. Of those endogenous variables, three reading strategy variables

were indicators for JOYREAD which was an indicator for READING.

The sample size was 4,979 after the list-wise deletion. The sample was

then split into a model averaging set (n ¼ 2,489) and a predictive testing

set (n ¼ 2,490).

For SEM Bayesian model averaging, we used the R package BMASEM

which is available at http://bise.wceruw.org/publications.html. In the BMA-

SEM program, the value of 100 was chosen for Occam’s window, and the

model in Figure 1 was used as a starting model for the model comparison in

the down algorithm. A BSEM based on Figure 1 was estimated with non-

informative conjugate priors for all model parameters was conducted using

“rjags” (Plummer, 2016), “coda” (Plummer, Best, Cowles, & Vines, 2006),

Figure 1. Original path model based on the Program for International Student
Assessment data for Case Study 3.

Kaplan and Lee 21

http://bise.wceruw.org/publications.html


and “MCMCpack” R packages. The MCMC algorithm for this case study

was set to 500,000 iterations, with 5,000 burn-in iterations, a thinning

interval of 50 from two chains starting at different locations in the posterior

distribution.

Predictive performance for Bayesian model averaging SEM. We compared the

predictive performance of Bayesian model averaging under SEM to

the predictive performance based on the initially specified BSEM.

Kaplan and Lee (2015) estimated the predictive performance of the

model under Bayesian model averaging by transforming the structural

form of the model into the reduced form where the endogenous vari-

ables are on the left side of the equation and the exogenous variables

on the right side. The structural form was given in Equation 14 and

can be rewritten as:

ðI� BÞy ¼ αþ Γxþ ζ: ð19Þ

Assuming that ðI� BÞ is nonsingluar,

y ¼ ðI� BÞ�1aþ ðI� BÞ�1Γxþ ðI� BÞ�1ζ ð20Þ

y ¼ P0 þP1xþ ζ�; ð21Þ

where P0 is the vector of reduced form intercepts, P1 the vector of reduced

form slopes, and ζ� the vector of reduced form disturbances with variance

matrix, C�. With the structural form of the model transformed into the

reduced form, we can obtain and compare predicted values in a manner

similar to Case Study 1. Specifically, the comparison procedure is as fol-

lows (Kaplan & Lee, 2015):

1. Randomly divide the data set into a model-averaging set and a

predictive testing set.

2. Fit a single BSEM and Bayesian model averaging SEM to the

model-averaging data.

3. Convert the structural form of the model to its reduced form.

4. Predict the final dependent variable in the reduced form for the

predictive testing data with the result of the reduced form of the

BSEM and Bayesian model averaging.

5. Compare their predictive performance based on 90% of predictive

coverage.
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SEM Results

Based on the model in Figure 1, the algorithm used in the BMASEM

package selected four models for C ¼ 100, resulting four models which

accounted for 100% of the total PMP. Note again, that the best model in

terms of the BIC has a PMP of 0.69, again indicating a relatively high

degree of posterior model uncertainty. Table 7 displays the selected

model for this example. Table 8 presents the results from the Bayesian

model averaging SEM and the BSEM. There were four regressions set

to 0 in the initial model including MEMOR on NATIVE and JOYREAD

on ESCS, GENDER, and NATIVE. With the exception of JOYREAD

on NATIVE, the remaining three regressions appeared in best

model based on the BIC. On the contrary, the regression of ELAB on

GENDER which was in the original model does not appear in the best

model.

Table 7. Selected Model by Bayesian Model Averaging: Structural Equation Model-
ing Using Program for International Student Assessment 2009.

Predictor Model 1 Model 2 Model 3 Model 4

MEMOR * ESCS � � � �
MEMOR * GENDER � � � �
MEMOR * NATIVE � � �
ELAB * ESCS � � � �
ELAB * GENDER
ELAB * NATIVE � � �
CSTRAT * ESCS � � � �
CSTRAT * GENDER � � � �
CSTRAT * NATIVE � � �
JOYREAD * ESCS � � � �
JOYREAD * GENDER � � � �
JOYREAD * NATIVE
JOYREAD * MEMOR � � � �
JOYREAD * ELAB � � � �
JOYREAD * CSTRAT � � � �
READING * JOYRREAD � � � �
BIC 48,263.14 48,266.63 48,266.98 48,267.26
PMP 0.69 0.12 0.10 0.09

Note. PMP ¼ posterior model probability. ESCS ¼ measure of economic, social, and cultural
status of the students; JOYREAD ¼ enjoyment of reading; DIVREAD ¼ diversity in reading;
MEMOR ¼ memorization strategies; ELAB ¼ elaboration strategies; CSTRAT ¼ control
strategies; BIC ¼ Bayesian information criterion; NATIVE ¼ immigrant status.
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Table 9 presents the prediction results for the BSEM example. As pre-

dicted by the theory of Bayesian model averaging, we observe modestly

better predictive performance in terms of 90% predictive coverage and the

Table 8. Comparison of the Result of Bayesian Model Averaging to the Result of
the Bayesian SEM.

Bayesian Model
Averaging BSEM

Predictor
Mean
ðbjyÞ

SD
ðbjyÞ

P
ðb 6¼ 0jyÞ% EAP SD 95% PPI

MEMOR * ESCS 0.09 .03 100.00 0.07 .02 [0.02, 0.12]
MEMOR * GENDER 0.18 .04 100.00 0.18 .04 [0.09, 0.27]
MEMOR * NATIVE �0.19 .08 91.21 — — —
ELAB * ESCS 0.16 .03 100.00 0.16 .03 [0.11, 0.21]
ELAB * GENDER 0.00 .00 0.00 �0.05 .04 [�0.14, 0.04]
ELAB * NATIVE �0.18 .08 89.90 �0.20 .06 [�0.32, �0.09]
CSTRAT * ESCS 0.29 .03 100.00 0.29 .02 [0.25, 0.34]
CSTRAT * GENDER 0.25 .04 100.00 0.25 .04 [0.18, 0.33]
CSTRAT * NATIVE �0.17 .08 87.98 �0.20 .05 [�0.30, �0.09]
JOYREAD * ESCS 0.13 .02 100.00 — — —
JOYREAD * GENDER 0.64 .04 100.00 — — —
JOYREAD * NATIVE 0.00 .00 0.00 — — —
JOYREAD * MEMOR �0.11 .02 100.00 �0.11 .02 [�0.16, �0.06]
JOYREAD * ELAB 0.08 .02 100.00 0.04 .02 [�0.01, 0.08]
JOYREAD * CSTRAT 0.28 .02 100.00 0.36 .02 [0.31, 0.41]
READING * JOYRREAD 0.34 .02 100.00 0.34 .02 [0.31, 0.38]
MEMOR *1 0.01 .07 100.00 �0.14 .03 [�0.20, �0.08]
ELAB *1 0.02 .07 100.00 0.06 .06 [�0.05, 0.18]
CSTRAT *1 �0.09 .07 100.00 �0.08 .05 [�0.17, 0.02]
JOYREAD *1 �0.36 .03 100.00 �0.02 .02 [�0.06, 0.02]
READING *1 5.00 .02 100.00 5.00 .02 [4.96, 5.03]
MEMOR ** MEMOR 1.19 .03 100.00 1.20 .02 [1.14, 1.27]
ELAB ** ELAB 1.23 .03 100.00 1.23 .02 [1.17, 1.30]
CSTRAT ** CSTRAT 1.18 .03 100.00 0.98 .02 [0.95, 1.01]
JOYREAD ** JOYREAD 0.89 .03 100.00 0.98 .02 [0.95, 1.01]
READING ** READING 0.76 .02 100.00 0.98 .02 [0.95, 1.01]

Note. N ¼ 2,490. Symbols * refers to regression of left-hand variable onto right-hand variable,
*1 refers to intercept, and** refers to variance. EAP¼ expected a posteriori; SD¼ posterior
standard deviation; PPI¼ posterior probability interval; ESCS¼measure of economic, social, and
cultural status of the students; JOYREAD ¼ enjoyment of reading; DIVREAD ¼ diversity in
reading; MEMOR¼memorization strategies; ELAB¼ elaboration strategies; CSTRAT¼ control
strategies; NATIVE ¼ immigrant status; READING ¼ reading proficiency.
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log-score rule under Bayesian model averaging compared to Bayesian and

frequentist approaches.

Discussion

We divide our Discussion section into four parts. First, we discuss some

remaining important technicalities. Second, we discuss some limitations

of BMA. Third, we discuss a frequentist approach to model averaging.

Last, we discuss the importance of model averaging for large-scale

assessment design.

Some Remaining Technicalities

Throughout this article, a subtle assumption was invoked but not dis-

cussed; namely, that the true model, say, MT was one of the models in

the set of models Mk , k ¼ 1; 2; :::;K. This assumption is referred to as the

M-closed framework discussed in Bernardo and Smith (2000) and Clyde

and Iversen (2015). The M-closed framework can be contrasted with the

M-completed framework and the M-open framework. In the M-closed

framework, it makes sense to assign prior probabilities that MT is in the

space of models. In fact, this is the framework that underlies the standard

approach to BMA discussed in this article; prior probabilities are assigned

to the set of models (typical the indifference prior 1=M) encoding ones

belief that each model is equally likely to be the true model. The appli-

cation of the indifference prior is the conventional default in the BMA

software program used in this article (Raftery et al., 2015). In the

M-completed and M-open frameworks, MT is not in the set of models

Mk , which are simply considered proxies to be compared. As such, the

assignment of prior probabilities makes less sense and the question

comes down to how models are to be chosen and averaged if the true

model does not exist within the set of possible models.

Table 9. Comparison of the Predictive Performance.

Structural Equation Modeling 90% Coverage Log Score

Bayesian model averaging .88 �.13
Bayesian model .87 �.14
Frequentist model .87 �.14
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Following Bernardo and Smith (2000, p. 385), in the M-completed

framework, the analyst has entertained a true model MT , but that this true

model lies outside the set of models Mk , k ¼ 1; 2; :::;K being considered.

The set of models Mk is enumerated for purposes of scientific communica-

tion and is evaluated in light of the true model MT . By contrast, in the

M-open framework, the analyst does not even entertain the existence of

MT and so here again, it does not make sense to assign prior probabilities.

The range of models Mk is enumerated for comparison purposes but not

with reference to the existence of a true model per se. The distinction among

these modeling frameworks is quite important, and indeed, recent work by

Clyde and Iversen (2015) have used a decision-theoretic framework that

allows BMA within the M-open framework. Future research should be

directed toward examining Clyde and Iversen’s framework for BMA in the

context of large-scale educational survey research.

Practical Limitations of Bayesian Model Averaging

Bayesian model averaging is not without a set of limitations that must be

considered if it is to be employed in practical applications. First, BMA is

sensitive to problems of collinearity. Following Draper’s (1999) commen-

tary on Hoeting et al. (1999), a problem with the indifference prior sug-

gested by Hoeting et al. (1999) arises when two models are essentially

identical in terms of their predictions. This can occur in models with nearly

collinear sets of variables. In this case, as Hoeting et al. point out, assuming

an indifference prior across the models results in placing twice as much

weight on a single model, of which there are two slightly different versions.

Draper (1999) shows this issue with the following example. Consider a

model M1 of some outcome variable y and predictors x1, x2, and a predictor

x3 which is collinear with x2. Then, being forced to ignore x3, a researcher

using an indifference prior on the model space would weight each model by

1/4—namely, M1 ¼ {no predictors, x1, x2, (x1, x2)}. However, if another

researcher includes x3, this would lead to weights 1/8 for each model M2 ¼
{no predictors, x1, x2, x3, (x1, x2), (x1, x3), (x2, x3), (x1, x2, x3)}. The problem

is that the last two models in M2 will fail to be estimated because of the

collinear variable x3, and this variable will have to be dropped. This will

lead to a third model M3 with weights 1/6—namely, M3 ¼ {no predictors,

x1, x2, x3, (x1, x2), (x1, x3}, which will then result in putting weights

f1=6; 1=6; 1=3; 1=3g on M1. As a result of this issue, some thought needs

to be given regarding the use of collinear variables in BMA with respect to

model weights. Although to our knowledge, the issue of collinearity has not
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been studied directly within BMA, it seems that an initial examination of

collinearity diagnostics (e.g., Belsley, Kuh, & Welsch, 2005) prior to

employing BMA is warranted.

A second practical issue with BMA is the inclusion of interaction terms.

It was noted earlier that the case studies used in this article did not employ

interaction terms, although interaction terms can be used in BMA. Specif-

ically, the problem with interaction terms in BMA, as pointed out by Mon-

tgomery and Nyhan (2010) and Raftery, Hoeting, Volinsky, Painter, and

Yeung (2015), is that averaging over interaction terms is problematic if a

model is included in which one of the main effects involved in the inter-

action is dropped. This assumes that the main effect was 0, and if this

assumption is false, then the interaction term will be incorrectly estimated.

In the case where models are enumerated within BMA for theoretical pur-

poses (as opposed to simply traversing the space of possible models), then

Montgomery and Nyhan (2010) advocate averaging over the subset of

models that include the main effects and interactions because this will lead

to posterior distributions that are theoretically consistent and correctly esti-

mated. In addition, Clyde (2003) pointed out that when models contain

interaction terms, specifying independent priors across the model space

may not be appropriate.

Non-Bayesian Approaches to Model Averaging

It should be noted that issues of model averaging and predictive perfor-

mance are not restricted to the domain of Bayesian statistics. A consider-

able amount of theoretical and practical work has focused on frequentist

approaches and data mining approaches to model averaging and predictive

performance (see, e.g., Hjort & Claeskens, 2003; Strobl, 2013; Strobl,

Malley, & Tutz, 2009; H. Wang, Zhang, & Zou, 2009). One approach

to frequentist model averaging that bears a strong resemblance to BMA is

based on the use of Akaike weights. Akaike weights have been discussed

in Wagenmakers and Farrell (2004) and H. Wang, Zhang, and Zou (2009).

In essence, Akaike (1973, 1985) weights are transformations of the

Akaike information criterion (AIC), such that they can be interpreted as

conditional probabilities for each model under consideration. Akaike

weights have the advantage of allowing a more nuanced choice among

models when the difference between an AIC value for one model versus

the AIC for the best model (lowest AIC) is small. A clear difference

between the use of Akaike weights and BMA is the absence of priors

on the model space or parameter space in the frequentist case.
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Nevertheless, it is crucial that future research provides detailed compar-

isons of these methods in terms of predictive performance.

Implications for Large-Scale Assessment Design

The subject-matter motivation for this article concerned using BMA for

prediction with large-scale educational assessments. Although our exam-

ples in this article and elsewhere (Chen & Kaplan, 2015; Kaplan & Chen,

2012, 2014) demonstrate the potential of using BMA for educational policy

analysis, additional research and development are required before BMA can

be fully implemented for building predictive models with large-scale edu-

cational assessments. Specifically, an important feature of large-scale

assessments such as TIMSS, PISA, or ECLS concerns the complexities of

the sampling design. For example, following Kaplan and Kuger (2016), the

nature of the sampling design for PISA ensures that the sample of students

for a given country is chosen in such a way as to accurately represent the

national population of 15-year-olds for that country. However, within coun-

tries, the selection probabilities to attain national representativeness might

be different and so survey weights along with Bayesian hierarchical mod-

eling need to be employed to ensure that each sampled student represents

the appropriate number of students in the PISA-eligible population within a

particular country. If the goal is to develop optimal predictive models in the

context of education policy using large-scale assessment data, it is crucial

that the nuances of the survey design be addressed. Because model aver-

aging is, by definition and practice, a model-based methodology, future

research will require focusing on model-based rather than designed-based

inference (see, e.g., Little, 2004).

In addition to addressing the complex sampling design of large-scale

educational assessments, it is necessary to address the design and imple-

mentation of the assessment instruments themselves. This is particularly

important when the goal is to develop optimally predictive models for

achievement outcomes because the implementation of the achievement

tests in assessments such as PISA and TIMSS uses so-called matrix sam-

pling designs. Matrix sampling designs yield “designed missing data” inso-

far as no student receives all of the test items. To obtain broad content

coverage, a student will receive a subset of items not all of which are in

common with the subset of items received by another student. As a result,

precision is sacrificed for content coverage and individual scores cannot be

reported. Instead of providing a single score for each student, a set of

plausible values for each student are provided that represent the set of
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plausible scores from a distribution of scores derived from a so-called

conditioning model (see von Davier, 2013). It is essential that these scores

are analyzed correctly in terms of obtaining point estimates and standard

errors, and rules have been developed by Rubin (1987) to properly analyze

plausible values. For Bayesian model averaging to be correctly utilized in

large-scale educational assessments, the methodology must be extended to

handle plausible value methodology.

Conclusion

The typical practice of statistical modeling for educational research and

policy analysis has been to specify, estimate, and test a specific model of

interest; examining the fit of the model to the data; and examining the

statistical significance of parameters of interest. The development of pre-

dictive statistical models in the domain of education research has, arguably,

received somewhat less attention. The question of using a model for some

purpose beyond assessing model fit leads to a consideration of the accuracy

of a model’s predictions and this focus on predictive accuracy is a central

feature of Bayesian statistics—arguably more central than the traditional

ideas of goodness of fit. Indeed, the BF, BIC, and the DIC focus our

attention on choosing models based on considering posterior predictive

accuracy. If the goal of model building is one of predictive accuracy, then

attachment to one’s specific model is of less importance. Thus, we are less

concerned about the fit of a theoretical model and more concerned about

finding a model that will predict well.

In the Bayesian framework, Bayesian model averaging is known to

yield models that perform better than any given submodel on the criteria

of predictive accuracy. This is due to the fact that not all models are

equally good as measured by their PMPs—yet all models contain some

useful information. By combining models while at the same time

accounting for model uncertainty, we obtain a “stronger” model in

terms of predictive accuracy.

To conclude, the purpose of this article was to demonstrate a well-known

and useful approach to model averaging in the Bayesian domain with the

goal of improving the predictive accuracy of common statistical models.

We concur with the famous quote by Box and Draper (1987), “All models

are wrong, but some are useful” (p. 424), but we add that even though

models capture only a small portion of the data generating process, each

model retains a degree of useful information. In particular, beyond captur-

ing the data generating process, a model’s usefulness lies in its predictive
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capacity. Here, then, Bayesian model averaging provides an approach to

optimizing the predictive utility of a large number of otherwise wrong

models. Nevertheless, for this didactic article, we show that the theory of

Bayesian model averaging works as expected, yielding models with better

predictive performance than any given submodel including the initial model

of interest. As always, the full benefit Bayesian model averaging will rest

on its application to practical problems where prediction is of high priority.
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Notes

1. The Laplace method of integrals is based on a Taylor expansion of a

function f ðuÞ of a q-dimensional vector u. The approximation isZ
ef ðuÞdu ’ 2ðpÞq=2jAj1=2

expff ðu�Þg, where u� is the value of u at which f

attains its maximum, and A is minus the inverse of the Hessian of f evaluated

at u�. Following Raftery (1996, p. 253), when the Laplace method is applied to

Equation 3, we obtain the approximation

pðyjMkÞ ’ ð2pÞqk jAk j1=2
pðyj~qk ;MkÞpð~qk ;MkÞ, where qk is the dimension of qk ,

~qk is the posterior model of qk , and Ak is minus the inverse of the Hessian of

logfpðyjqk ;MkÞpðqk jMkÞg, evaluated at the posterior mode ~qk .

2. The notion of “best subset regression” is controversial in the frequentist frame-

work because of concern over capitalization on chance. However, in the Baye-

sian framework with its focus on predictive accuracy, finding the best subset of

predictors does not present a problem.

3. Note that it is not technically proper to use only one plausible value in a statistical

analysis. A direction of future research will require developing Bayesian model

averaging when analyzing multiple plausible values.

4. Note that in the case where there is only one element in the block, the prior

distribution is assumed to be inverse-gamma, that is, θIW*IGða; bÞ.
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